
ptg11875841

 Getting Started: Creating a

Simple App

 What You will Learn:

 Setting up your development environment

 Creating a simple app

 Personalizing your app

 Running your app on an emulator

 The goal of this hour is to jump into Android development. To do this, you first need to set up a

development environment. With the introduction of the Android Developer Tools (ADT) Bundle

download, this process has become much easier for new Android developers. With the develop-

ment environment in place, you will create a simple app and then modify it. This process will

introduce you to the tools for creating user interfaces, running test apps, and debugging code.

 Setting Up Your Development Environment
 To jump into Android development, you have to first set up a working development environ-

ment. You do Android development in Java. Significant Android support is built into the Eclipse

Integrated Development Environment (IDE). IntelliJ and Android Studio, which is built on

IntelliJ, are other good choices. This book focuses on using Eclipse. To install Eclipse and the

Eclipse plugin for Android (Android Developer tools), you download a single installation file

called the ADT Bundle.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

4 Getting Started: Creating a Simple App

 Installation Using the ADT Bundle
 With the single download of the ADT Bundle, you receive all you need to begin Android devel-

opment. The ADT Bundle includes the Eclipse IDE and all required tools to get started.

 Download the ADT Bundle by following the download links provided on

http://developer.android.com/sdk/index.html . Installation and environment setup instructions

are available for both Windows and Macintosh machines.

 The ADT Bundle is a zipped file. After you download and unzip it, you see the folder structure

shown in Figure 1.1 . Running the Eclipse application starts the development environment.

 FIGURE 1.1
 Folder structure of ADT Bundle

 Looking at Figure 1.1 , you see that two main folders exist:

 Eclipse contains the Eclipse Integrated Development Environment and related tools.

 The sdk folder contains a number of subfolders, including tools, platforms, and platform

tools.

From the Library of Fady AbdelMoneim Mohamed

http://developer.android.com/sdk/index.html

ptg11875841

Setting Up Your Development Environment

 Understanding What Has Been Installed
 The Android environment distinguishes between Android SDK tools and platform tools. Tools

are the core components of the Software Development Kit (SDK). They are used by all versions

of Android. Platform tools are associated with a specific version of Android. In this example,

the platform for version 4.2 of Android is installed. There are also folders called extras, add-ons,

and system-images. When you use an emulator to test an Android app, you use a virtual device

that is set up in the system-images folder. A virtual device or Android Virtual Device is referred

to as an AVD. You can create an AVD by using a tool in Eclipse ADT called the Android Virtual

Device Manager. You can access it from the Windows menu in Eclipse.

 Figure 1.2 shows the app start-up screen for Android developer tools after you’ve installed the

bundle. When you use the tools installed by the ADT Bundle, you are using Eclipse. (This book

refers to the development environment as Eclipse.)

 FIGURE 1.2
 Selecting a workspace in Eclipse

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 Instantly Creating a Simple App
 In this section, you create and run a simple app. Figure 1.2 shows that when you start Eclipse,

you must set a workspace for development. Typically, the default is a good choice. The first time

you use Eclipse, you see a welcome screen. After you close it, you see Eclipse, as shown in Figure

 1.3 .

 FIGURE 1.3
 Starting Eclipse

 Eclipse is a blank slate to start your app development efforts. You add projects for each app you

want to create. The discussion starts with a simple app and looks closely at what can be auto-

matically generated.

 Creating a New Project
 To create an app, the first step is to create a new project. To do this, follow these steps:

 1. In Eclipse, choose File, New, and Android Application Project.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

Instantly Creating a Simple App

 2. Fill in Hour1App for the Application Name. The Project Name and Package Name will be

filled in automatically.

 Your screen should look like what’s shown in Figure 1.4 .

 FIGURE 1.4
 Naming your Android project

 DID YOU KNOW?

 Package Names
 The package name in Figure 1.4 includes com.example , and a note tells you that you should
change it. A Java package uniquely identifies an app. Typically, you use a reverse domain name
structure. You can change the package name to anything you like. The apps in this tutorial use
com.bffmedia as the package name going forward.

 3. Click Next. On the screen that appears, choose the checkbox to create a custom icon and

create an activity. Your screen will look like Figure 1.5 .

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 FIGURE 1.5
 Configuring the project

 4. Click Next. The icon screen appears. You can accept the default icon and choose an activ-

ity type for the app. Choose a Blank Activity and click Next. Your screen should look like

 Figure 1.6 . Click Finish.

 The project might take a minute or two to load, but your formally empty Eclipse ADT is starting

to look full! Figure 1.7 shows the project in full. On the left, you see the Package Explorer for the

Hour1App. Many folders have been created. The highlighted item is called activity_main.xml.

The center of the screen shows a graphical representation of this XML file.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

Instantly Creating a Simple App

 FIGURE 1.7
 The newly created project

 FIGURE 1.6
 Creating a blank activity

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 Understanding the Java Code and XML Layout
 As mentioned, Figure 1.7 shows the graphical layout represented by the XML file activity_main.

xml. In Android, this is a standard way to create the user interface. Creating or modifying a user

interface on the fly is certainly possible, but for the most part, you will use XML files. You can

modify these files through the graphical interface or by changing the XML directly. Both meth-

ods can be useful.

 You just generated a simple app that shows the screen defined in the XML layout. There are

methods in Java code to show that screen. To see the Java code, in the Package Explorer, expand

the src folder and select the MainActivity.java file. Your screen should look like Figure 1.8 .

 FIGURE 1.8
 Source code for the app

 In Figure 1.8 , you can see that MainActivity extends a class called Activity . There are two

methods: onCreate and onCreateOptionsMenu() . In the onCreate() method, you see the

link between your source code and the XML layout file. A call is made to setContentView()

with a reference to R.layout.activity_main . That is the XML file that you created.

 You use the onCreateOptionsMenu() that is generated for handling menu items.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

Running the App

 DID YOU KNOW?

 Resource Files
 Android converts files in the res folder to resources that are used within the app. The
activity_main.xml file is in the folder res/layout/. When this is referred to as a resource within
the app, it is R.layout.activity_main .

 Running the App
 To run the app, follow these steps:

 1. Highlight Hour1App and right-click it with a mouse to show a list of options. You can also

press the Control key and click a Mac. Choose Run As, and then Android Application (see

 Figure 1.9).

 FIGURE 1.9
 Running the app as an Android application

 2. When you receive the error message “Android AVD Error,” you can choose whether to cre-

ate a new Android Virtual Device. Choose Yes.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 An Android Virtual Device (AVD) is required to run the emulator. It defines the specifics of a

device for testing in the emulator. Many different devices are available and you can create cus-

tom configurations. Creating a new AVD with the defaults provided is easy.

 To do this, in the Android Virtual Device Manager screen:

 1. Choose New to create a new AVD.

 2. Select a device from the drop-down menu and give this AVD a name.

 In Figure 1.10 , the device selected is a Galaxy Nexus and the AVD Name is “GalaxyNexus.”

 FIGURE 1.10
 Android Virtual Device Manager

 Now you can close the AVD Manager and run the app again. It should successfully run in the

emulator using the Galaxy Nexus Android Virtual Device.

 DID YOU KNOW?

 Auto Monitor Logcat
 When you run the app in the emulator, Eclipse asks whether you want to automatically monitor log-
cat. Logcat is an Android tool for showing the messages that are logged to the system. Logcat will
be the first area you look when debugging, and you can add your own app messages. So, say “Yes”
to monitoring logcat.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

Personalizing the App

 Personalizing the App
 The instant app you created shows the words “Hello world!,” as shown in Figure 1.11 . You’ll

want to make this app your own by adding interactive features. To do this, you update the user

interface by adding a field for entering data and a button. When the user clicks the button, the

entered text appears in the center of the screen.

 Updating the User Interface
 The first step in making the app your own is to update the user interface.

 Updating the User Interface Using the Visual Editor

 Using the visual editing tool that is built into the ADT, you can add a button and an EditText
field. An EditText field is a text input field. To do so, follow these steps:

 1. Find the activity_main.xml file in the res/layout folder. That is the file that was displayed
when the app was created.

 2. Choose a button from the Form Widgets section of the palette and drag it onto the app
canvas. See Figure 1.11 .

 3. Select the Text Fields section of the palette. Choose the first type of EditText field and
drag it onto the canvas. As you drag it, you see the words “Plain Text.” Figure 1.12 shows
your edits.

 4. Save your changes.

TRY IT YOURSELF

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 FIGURE 1.11
 Adding a Button

 FIGURE 1.12
 Adding an EditText field

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

Personalizing the App

 Adding Action in Code
 Now that you have the simple user interface for your app, add the code to refer to the Button

and EditText . The next step is to update the TextView in the center of the screen. Listing 1.1

shows the XML code for Button that was created using the visual tool. The id for the Button is

specified in line 2 as button1 ; the EditText is editText1 ; and the original TextView has the id

 textView1 . These ids are important because they are used to refer to these user interface items

in the code.

 LISTING 1.1 Button Defined in XML Layout

 1: <Button

 2: android:id="@+id/button1"

 3: android:layout_width="wrap_content"

 4: android:layout_height="wrap_content"

 5: android:layout_alignParentBottom="true"

 6: android:layout_alignParentRight="true"

 7: android:layout_marginBottom="17dp"

 8: android:layout_marginRight="15dp"

 9: android:text="Button" />

 The goal is to accept the information entered into the EditText and plop it into the TextView

when the Button is clicked. The first step in doing that is making a connection between the user

interface and the code. The second step is to add an action to the Button .

 You need to modify the code that was generated. Select the MainActivity.java file in Eclipse. You

modify the code in the onCreate() method, but first add the necessary imports for the user

interface elements.

 The new import statements are the following:

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

 The complete list of imports is as follows:

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

 These Java classes are included in Android in the widget package.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 Add the code to the onCreate() method to associate the resources from the layout file with

the code. Listing 1.2 shows the onCreate() method. Lines 5 through 9 define an EditText ,

 TextView , and Button that you can now use in your code. The findViewById() method

makes the association Line 4 tie this Activity to the XML layout file named activity_main.

xml in the res/layout folder in your project. Lines 5–8 refer to the ids of each of the resources

defined in that file.

 LISTING 1.2 Referring to UI Widgets in Code

1: @Override

2: protected void onCreate(Bundle savedInstanceState) {

3: super.onCreate(savedInstanceState);

4: setContentView(R.layout.activity_main);

5: EditText e = (EditText)findViewById(R.id.editText1);

6: TextView t = (TextView)findViewById(R.id.textView1);

7: Button b = (Button)findViewById(R.id.button1);

8: }

 Listing 1.2 sets you up to read the data from the EditText field and populate the TextView

when the Button is clicked. Listing 1.3 shows the code to do this.

 LISTING 1.3 Responding to the Button Click

1: @Override

2: protected void onCreate(Bundle savedInstanceState) {

3: super.onCreate(savedInstanceState);

4: setContentView(R.layout.activity_main);

5: final EditText e = (EditText)findViewById(R.id.editText1);

6: final TextView t = (TextView)findViewById(R.id.textView1);

7: Button b = (Button)findViewById(R.id.button1);

8: b.setOnClickListener(new OnClickListener() {

9: public void onClick(View v) {

10: t.setText(e.getText());

11: }

12: });

13: }

 You add the final modifier to the declarations on lines 5 and 6. Final variables are not changed

after they are assigned. That is true in this case, and it allows you to use these variables in the

code for the Button . If the variable e is not declared final, you see this error in Eclipse:

Cannot refer to a non-final variable e inside an inner class defined in a different
method

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

Q&A

 This error occurs on line 10. In line 10, you use the variable e , but you are in an inner class.

Line 8 declares a new instance of the class OnClickListener() . Using a variable that might

change in a separate class like this is not allowed. By declaring e as a final variable, you can use

it because you are assured it is not changing. You can also make the EditText a field in the

class that would have global scope and be visible to all methods.

 The code to update the TextView from the EditText field occurs on line 10. The text is read

from variable e and set in variable t . Line 10 is in the onClick() method for Button b .

Setting the onClickListener() in line 8 tells Button b to listen for clicks. When a click on

the Button occurs, the onClick() method of the OnClickListener fires and the code runs to

update the TextView .

 Make these modifications, and run the app in the emulator to watch the interaction occur.

 Summary
 In this tutorial, the goal was to jump into Android development. The first step was to download

and install a development environment for Android. Using that environment, you generated

a simple application and then updated it. You learned that the user interface for an Android

app can be created visually, and that it is actually an XML file. You saw how the Java code for

Android development refers to resources in the XML layout. You added a simple action to the

app by creating an onClickListener() method for a button.

 Q&A
 Q. Is it best to use the ADT Bundle to get started?

 A. The ADT Bundle is the quickest and easiest way to start Android development, but if you
have an existing Eclipse instance or are using an IDE other than Eclipse, you should be
able to install the Android SDK, platform, and platform tools as separate pieces and con-
tinue to use the development environment that you are familiar with.

 Q. Should I use the visual tool for creating user interfaces?

 A. Generally, yes, but this chapter just introduces this tool. As you learn more about Android
layouts, you might find yourself using both the tool and modifying XML directly.

From the Library of Fady AbdelMoneim Mohamed

ptg11875841

 Getting Started: Creating a Simple App

 Workshop

 Quiz
 1. In an activity, what method associates a resource for a Button to a variable of type

 Button ?

 2. How do you add a Button to the screen using the visual tool?

 Answers
 1. An activity includes a method called findViewById() that associates resources with vari-

ables in the code. Specifically, findViewById() is passed a resource id and returns the
 Button or other view associated with the resource. In this code, you must cast the view to
the proper type.

 2. Just drag and drop the Button from the palette to the app canvas.

 Exercise
 Use the visual editing tool to add additional items to the app. Those items should include a

 CheckBox and an ImageView , but this is a good opportunity to try many different user inter-

face elements.

From the Library of Fady AbdelMoneim Mohamed

